Part 18 (1/2)
G: Total shoveling and wheeling min.
H: Times per barrow min.
I: No obs J: Times per barrow min.
K: Time per pc. per shovel min.
L: No. shovels per barrow min.
M: Time wheeling 100 ft. min.
|A| B | C | D |A| B | C | D |A | B |C | D |A |B |C --------------------+-+----+----+---+-+-----+-----+---+--+----+--+---+--+--+- Department-- | | | | | | | | | | | | | | | Construction |a|1.37|1.37|15 |a|1.12 |1.12 |12 |a'|1.86| |11 | | | Men--Mike Flaherty |b|1.56|0.19| |b|1.39 |0.27 | |a'|1.81| |13 | | | |c|1.82|0.26| |c|1.58 |0.19 | |a'|2.14| |16 | | | Materials--Sand | | | | | | | | | | | | | | | requiring no pick |d|1.97|0.15| |d|1.70 |0.12 | |a'|1.98| |14 | | | Materials--Hard | | | | | | | | | | | | | | | clay in bank |e|1.97|0.15| |e|1.92 |0.22 | | | | | | | | Implements--No. 3 | | | | | | | | | | | | | | | shovel; | | | | | | | | | | | | | | | Contractors' | | | | | | | | | | | | | | | wooden | | | | | | | | | | | | | | | wheelbarrow |f|2.36|0.09| |f|2.36 |0.09 | | | | | | | | Conditions--Day-work| | | | | | | | | | | | | | | for a contractor. | | | | | | | | | | | | | | | By previous | | | | | | | | | | | | | | | observation |a|1.24|1.24|13 |a|2.05 |0.13 |13 | | | | | | | An average barrow | | | | | | | | | | | | | | | load of sand is | | | | | | | | | | | | | | | 2.32 cu. ft. | | | | | | | | | | | | | | | measured in cut |b|1.36|0.12| |b|1.38 |0.15 | | | | | | | | An average barrow | | | | | | | | | | | | | | | load of clay is | | | | | | | | | | | | | | | 2.15 cu. ft. | | | | | | | | | | | | | | | measured in cut |c|1.59|0.23| |c|1.60 |0.22 | | | | | | | | |d|1.83|0.24| |d|1.78 |0.18 | | | | | | | | |e|2.08|0.25| |e|2.05 |0.27 | | | | | | | | |f|2.23|0.25| |f|2.23 |0.18 | | | | | | | | ----------------------------------------------------------------------------- Time | Complete | | | | | Detail | | | | | | Operations | E | F | G | H | Operations |I | J | K | L | M ------+-------------+---+---+---+----+-------------+--+-----+-----+----+----- 7 A.M.|Commenced | | | | || | | | | |loading sand | | | | | | | | | | 9.02 |43 loads |122| |122|2.84|a--Filling |4 |1.240|0.094|13.2| |wheeled to a | | | | | barrow with | | | | | |distance of | | | | | sand | | | | | |50 ft. | | | | | | | | | | 9.50 |Picking | 48| | | |b--Starting |4 |0.182| | | |hard clay | | | | | | | | | | 11.39 |29 loads clay|109| | | |c--Wheeling |4 |0.225| | |0.450 |wheeled to a | | | | | full--50 ft.| | | | | |distance of | | | | | | | | | | |50 ft. | | | | | | | | | | 11.46 |Picking clay | 7|55 | |1.67|d--Dumping |4 |0.172| | | |again | | | | | & turning | | | | | 12.01 |4 loads clay | 15| |124|3.76|e--Returning |4 |0.260| | |0.520 |wheeled to a | | | | | empty--50 | | | | | |distance of | | | | | ft. | | | | | |50 ft. | | | | | | | | | | | |301| | | |f--Dropping |4 |0.162| | | | | | | | | barrow & | | | | | | | | | | | starting | | | | | | | | | | | to shovel | | | | | | | | | | |g-- | |2.241| | | | | | | | |h-- | | | | | | | | | | |i-- | | | | | | | | | | |j-- | | | | | | | | | | |k-- | | | | | | | | | | |l-- | | | | | | | | | | |m-- | | | | | | | | | | |a'--Filling | | | | | | | | | | | barrow with | | | | | | | | | | | clay |4 |1.948|0.144|3.5 | ------+-------------+---+---+---+----+-------------+--+-----+-----+----+----
NOTE.--Comparison of ”Detail” with ”Complete” operations shows that about 27 per cent of the total time was taken in rest and other necessary delays. About the same quant.i.ty loose as at the start. Observer: JAMES MONROE.
Here is an account of the effect the result of this time-study and these tests in strength produced on the output and wage of a group of men at the Bethlehem Steel Co., whose work Mr. Taylor reorganized after that of the Midvale Steel Company:--
The opening of the Spanish War found some 80,000 tons of pig-iron piled in small piles in an open field adjoining the Bethlehem Steel Company's works. Prices for pig-iron had been so low that it could not be sold at a profit, and was therefore stored. With the opening of the Spanish War the price of the pig-iron rose, and this large acc.u.mulation of iron was sold.
The ...steel company's ...pig-iron gang ...consisted of about 75 men ...good average pig-iron handlers, under an excellent foreman ...A railroad switch was run out into the field, right along the edge of the piles of pig-iron. An inclined plane was placed against the side of a car, and each man picked up from his pile a pig of iron weighing about 92 pounds, walked up the inclined plank, and dropped it on the end of the car.
We found that this gang were loading on the average of about 12-1/2 tons per man per day in this manner. We were surprised to find, after studying the matter, that a first-cla.s.s pig-iron handler ought to handle between 47 and 48 tons per day, instead of 12-1/2 tons, which were being handled.
This task seemed so very large that we were obliged to go over our work several times before we were sure we were absolutely right.... The task which faced us as managers under the modern scientific plan ...was ...to see that the 80,000 tons of pig-iron were loaded on the cars at the rate of 47 tons per man per day in place of 12-1/2 tons.... It was further our duty to see that this work was done without bringing on a strike among the men, without any quarrel with the men, and to see that the men were happier and better contented with loading at the new rate of 47 tons than they were when loading at the old rate of 12-1/2 tons.
The first step was the scientific selection of the workmen....
Under ...scientific management ...it is an inflexible rule to talk to and deal with only one man at a time, since we are not dealing with men in ma.s.ses, but are trying to develop each individual man to his highest state of efficiency and prosperity. The 75 men in the gang were carefully watched and studied for three or four days, at the end of which time we had picked out four men who were believed to be physically able to handle pig-iron at the rate of 47 tons per day. A careful study was then made of each of these men.... Finally one man was selected from among the four as the most likely man to start with.
This man, who had been receiving $1.15 a day, agreed to follow for $1.85 a day the directions of the time-student, who had determined the proportion and intervals of rest necessary for the regular accomplishment of the task, without overstrain or undue fatigue. The worker started to carry his accustomed load and at regular intervals was told by the time-student, observing the proper period for rest and work with a watch: ”Now pick up a pig and walk. Now sit down and rest. Now, walk--now, rest, etc.”
[Ill.u.s.tration: Courtesy of _Industrial Engineering_
THE NEW METHOD OF PROVIDING THE BRICKLAYER WITH MATERIAL]
He walked when he was told to walk and rested when he was told to rest, and at half past five in the afternoon had his 47-1/2 tons loaded on the car. And he practically never failed to work at this pace and to do the task that was set him during the three years that the writer was at Bethlehem.... Throughout this time, he averaged a little more than $1.85 a day; whereas he had never received more than $1.15 a day, which was the ruling wage at that time in Bethlehem.... One man after another was picked out and trained to handle pig-iron at the rate of 47-1/2 tons a day, until all of the pig-iron was handled at this rate, and all of this gang were receiving sixty per cent more wages than other men around them.
A very brilliant and extended investigation concerning the elimination of waste of human energy and labor by motion-study has been made independently of Mr. Taylor by Mr. Frank Gilbreth, whose discoveries in the field have already cut down the effort of the labor of bricklaying two-thirds. The two accompanying photographs show what Scientific Management and motion-study did in one case to serve the worker by an orderly and convenient arrangement of his material.
These extremely simple processes of bricklaying and carrying pig-iron have been selected as instances of the procedure of Scientific Management, because they reveal one of its most illuminating qualities.
Scientific Management makes an art of all work. It gives the most primitive manual task its right dignity, and turns knowledge, science, and the powers of direction from the position of tyrants of labor to that of its servitors.
Scientific Management, then, besides eliminating waste in human energy, or rather by way of eliminating this waste, eliminates waste in equipment, waste in machine power, and evolves through an extended planning department such better appliances, such an improved programme of work and recording of individual work as has been only very imperfectly indicated here.
For an instance of the elimination of waste in equipment the account of the saving effected for one establishment by an efficient use of its belting may be narrated. This was the work of Mr. Harrington Emerson, widely known as a counselling engineer. In the '70's Mr. Emerson had become interested in the subject of Efficiency Engineering by his study of the successful conduct of the German Army during the Franco-Prussian War; and he has since then reorganized numerous large enterprises in accordance with the principles derived from his inquiry. Among these establishments was a machine shop where the belting[47]
”had cost (for maintenance and renewals) at one of the main shops about $12,000 a year--or $1000 a month--and it was so poorly installed and supervised that there was an average of 12 breakdowns every working-day, each involving more or less disorganization of the plant in its part or as a whole.” The workmen in charge of the belts now received directions as to their charge from a general foreman, who received directions from an efficiency engineer. This engineer had derived his general information on the subject from a man who had made a special study of belts for nine years. He laid down a few general rules, requiring accurate records of breakdown, repair, and installation, full authority and responsibility for the special worker on belts, a better grade of work in installation and better operation of the belts. Under this method ”the number of breakdowns declined from 12 each working-day to an average of 2 a day, not one of them serious ...and due to original defective installation, which it was impossible to remedy without unjustifiable expense.... The cost of maintaining belts fell from $1000 a month to $300 a month.”
This elimination of waste of human power, and in connection with it the elimination of waste of equipment and of machine power, have, then, in the course of the last thirty years, been studied and applied in this country in the way roughly outlined by Mr. Taylor, Mr. Gilbreth, Mr.
Gantt, Mr. Sanford Thompson, Mr. Barth, Mr. Cook, and Mr. Hathaway; and in somewhat the same manner by Mr. Harrington Emerson, Mr. Edward Emerson, Mr. W.J. Power, Mr. Arion, Mr. Playfair, and Mr. Chipman. These engineers have developed methods which have made it possible for them to reorganize the various businesses mentioned which have consulted them, and to decrease their costs and increase their profits. It will be seen at once that the procedure of Scientific Management in determining by scientific a.n.a.lysis the rate of speed and the working conditions under which machine power and human energy can be at once most productively and continuously employed, is really new, and differs radically from former business management, however ably systematized.
”But these,” said Mr. Taylor, in speaking of the methods of Scientific Management, ”are incidents in the course of Scientific Management. Its great underlying purpose is the achievement of prosperity for the workers and for the employers.” Mr. Taylor's definition of prosperity, given on another occasion, is one of the finest the present writer has ever heard.
”By a man's prosperity, I mean his best use of his highest powers.”