Part 9 (1/2)
!Method A!
The procedures, as here prescribed, are applicable to iron ores in general, provided these ores contain no const.i.tuents which are reduced by zinc or stannous chloride and reoxidized by permanganates. Many iron ores contain t.i.tanium, and this element among others does interfere with the determination of iron by the process described.
If, however, the solutions of such ores are treated with sulphureted hydrogen or sulphurous acid, instead of zinc or stannous chloride to reduce the iron, and the excess reducing agent removed by boiling, an accurate determination of the iron can be made.
PROCEDURE.--Grind the mineral to a fine powder. Weigh out two portions of about 0.5 gram each into small porcelain crucibles. Roast the ore at dull redness for ten minutes (Note 1), allow the crucibles to cool, and place them and their contents in ca.s.seroles containing 30 cc. of dilute hydrochloric acid (sp. gr. 1.12).
Proceed with the solution of the ore, and the treatment of the residue, if necessary, exactly as described for the b.i.+.c.hromate process on page 56. When solution is complete, add 6 cc. of concentrated sulphuric acid to each ca.s.serole, and evaporate on the steam bath until the solution is nearly colorless (Note 2). Cover the ca.s.seroles and heat over the flame of the burner, holding the ca.s.serole in the hand and rotating it slowly to hasten evaporation and prevent spattering, until the heavy white fumes of sulphuric anhydride are freely evolved (Note 3). Cool the ca.s.seroles, add 100 cc. of water (measured), and boil gently until the ferric sulphate is dissolved; pour the warm solution through the reductor which has been previously washed; proceed as described under standardization, taking pains to use the same volume and strength of acid and the same volume of wash-water as there prescribed, and t.i.trate with the permanganate solution in the reductor flask, using the ferrous sulphate solution if the end-point should be overstepped.
From the corrected volume of permanganate solution used, calculate the percentage of iron (Fe) in the limonite.
[Note 1: The preliminary roasting is usually necessary because, even though the sulphuric acid would subsequently char the carbonaceous matter, certain nitrogenous bodies are not thereby rendered insoluble in the acid, and would be oxidized by the permanganate.]
[Note 2: The temperature of the steam bath is not sufficient to volatilize sulphuric acid. Solutions may, therefore, be left to evaporate overnight without danger of evaporation to dryness.]
[Note 3: The hydrochloric acid, both free and combined, is displaced by the less volatile sulphuric acid at its boiling point. Ferric sulphate separates at this point, since there is no water to hold it in solution and care is required to prevent b.u.mping. The ferric sulphate usually has a silky appearance and is easily distinguished from the flocculent silica which often remains undissolved.]
!Zimmermann-Reinhardt Procedure!
!Method (B)!
PROCEDURE.--Grind the mineral to a fine powder. Weigh out two portions of about 0.5 gram each into small porcelain crucibles. Proceed with the solution of the ore, treat the residue, if necessary, and reduce the iron by the addition of stannous chloride, followed by mercuric chloride, as described for the b.i.+.c.hromate process on page 56. Dilute the solution to about 400 cc. with cold water, add 10 cc. of the manganous sulphate t.i.trating solution (Note 1, page 68) and t.i.trate with the standard pota.s.sium permanganate solution to a faint pink (Note 1).
From the standardization data already obtained calculate the percentage of iron (Fe) in the limonite.
[Note 1: It has already been noted that hydrochloric acid reacts slowly in cold solutions with pota.s.sium permanganate. It is, however, possible to obtain a satisfactory, although somewhat fugitive end-point in the presence of manganous sulphate and phosphoric acid.
The explanation of the part played by these reagents is somewhat obscure as yet. It is possible that an intermediate manganic compound is formed which reacts rapidly with the ferrous compounds--thus in effect catalyzing the oxidizing process.
While an excess of hydrochloric acid is necessary for the successful reduction of the iron by stannous chloride, too large an amount should be avoided in order to lessen the chance of reduction of the permanganate by the acid during t.i.tration.]
DETERMINATION OF THE OXIDIZING POWER OF PYROLUSITE
INDIRECT OXIDATION
Pyrolusite, when pure, consists of manganese dioxide. Its value as an oxidizing agent, and for the production of chlorine, depends upon the percentage of MnO_{2} in the sample. This percentage is determined by an indirect method, in which the manganese dioxide is reduced and dissolved by an excess of ferrous sulphate or oxalic acid in the presence of sulphuric acid, and the unused excess determined by t.i.tration with standard permanganate solution.
PROCEDURE.--Grind the mineral in an agate mortar until no grit whatever can be detected under the pestle (Note 1). Transfer it to a stoppered weighing-tube, and weigh out two portions of about 0.5 gram into beakers (400-500 cc.) Read Note 2, and then calculate in each case the weight of oxalic acid (H_{2}C_{2}O_{4}.2H_{2}O) required to react with the weights of pyrolusite taken. The reaction involved is
MnO_{2} + H_{2}C_{2}O_{4}(2H_{2}O) + H_{2}SO_{4} --> MnSO_{4} + 2CO_{2} + 4H_{2}O.
Weigh out about 0.2 gram in excess of this quant.i.ty of !pure! oxalic acid into the corresponding beakers, weighing the acid accurately and recording the weight in the notebook. Pour into each beaker 25 cc. of water and 50 cc. of dilute sulphuric acid (1:5), cover and warm the beaker and its contents gently until the evolution of carbon dioxide ceases (Note 3). If a residue remains which is sufficiently colored to obscure the end-reaction of the permanganate, it must be removed by filtration.
Finally, dilute the solution to 200-300 cc., heat the solution to a temperature just below boiling, add 15 cc. of a manganese sulphate solution and while hot, t.i.trate for the excess of the oxalic acid with standard permanganate solution (Notes 4 and 5).