Part 19 (1/2)

The precipitate may then be ignited and weighed as ferric oxide, as described on page 110.

Calculate the percentage of iron (Fe) in the bra.s.s.

DETERMINATION OF ZINC

PROCEDURE.--Acidify the filtrate from the iron determination with dilute nitric acid. Concentrate it to 150 cc. Add to the cold solution dilute ammonia (sp. gr. 0.96) cautiously until it barely smells of ammonia; then add !one drop! of a dilute solution of litmus (Note 1), and drop in, with the aid of a dropper, dilute nitric acid until the blue of the litmus just changes to red. It is important that this point should not be overstepped. Heat the solution nearly to boiling and pour into it slowly a filtered solution of di-ammonium hydrogen phosphate[1] containing a weight of the phosphate about equal to twelve times that of the zinc to be precipitated. (For this calculation the approximate percentage of zinc is that found by subtracting the sum of the percentages of the copper, lead and iron from 100 per cent.) Keep the solution just below boiling for fifteen minutes, stirring frequently (Note 2). If at the end of this time the amorphous precipitate has become crystalline, allow the solution to cool for about four hours, although a longer time does no harm (Note 3), and filter upon an asbestos filter in a porcelain Gooch crucible.

The filter is prepared as described on page 103, and should be dried to constant weight at 105C.

[Footnote 1: The ammonium phosphate which is commonly obtainable contains some mono-ammonium salt, and this is not satisfactory as a precipitant. It is advisable, therefore, to weigh out the amount of the salt required, dissolve it in a small volume of water, add a drop of phenolphthalein solution, and finally add dilute ammonium hydroxide solution cautiously until the solution just becomes pink, but do not add an excess.]

Wash the precipitate until free from sulphates with a warm 1 per cent solution of the di-ammonium phosphate, and then five times with 50 per cent alcohol (Note 4). Dry the crucible and precipitate for an hour at 105C., and finally to constant weight (Note 5). The filtrate should be made alkaline with ammonia and tested for zinc with a few drops of ammonium sulphide, allowing it to stand (Notes 6, 7 and 8).

From the weight of the zinc ammonium phosphate (ZnNH_{4}PO_{4}) calculate the percentage of the zinc (Zn) in the bra.s.s.

[Note 1: The zinc ammonium phosphate is soluble both in acids and in ammonia. It is, therefore, necessary to precipitate the zinc in a nearly neutral solution, which is more accurately obtained by adding a drop of a litmus solution to the liquid than by the use of litmus paper.]

[Note 2: The precipitate which first forms is amorphous, and may have a variable composition. On standing it becomes crystalline and then has the composition ZnNH_{4}PO_{4}. The precipitate then settles rapidly and is apt to occasion ”b.u.mping” if the solution is heated to boiling. Stirring promotes the crystallization.]

[Note 3: In a carefully neutralized solution containing a considerable excess of the precipitant, and also ammonium salts, the separation of the zinc is complete after standing four hours. The ionic changes connected with the precipitation of the zinc as zinc ammonium phosphate are similar to those described for magnesium ammonium phosphate, except that the zinc precipitate is soluble in an excess of ammonium hydroxide, probably as a result of the formation of complex ions of the general character Zn(NH_{3})_{4}^{++}.]

[Note 4: The precipitate is washed first with a dilute solution of the phosphate to prevent a slight decomposition of the precipitate (as a result of hydrolysis) if hot water alone is used. The alcohol is added to the final wash-water to promote the subsequent drying.]

[Note 5: The precipitate may be ignited and weighed as Zn_{2}P_{2}O_{7}, by cautiously heating the porcelain Gooch crucible within a nickel or iron crucible, used as a radiator. The heating must be very slow at first, as the escaping ammonia may reduce the precipitate if it is heated too quickly.]

[Note 6: If the ammonium sulphide produced a distinct precipitate, this should be collected on a small filter, dissolved in a few cubic centimeters of dilute nitric acid, and the zinc reprecipitated as phosphate, filtered off, dried, and weighed, and the weight added to that of the main precipitate.]

[Note 7: It has been found that some samples of asbestos are acted upon by the phosphate solution and lose weight. An error from this source may be avoided by determining the weight of the crucible and filter after weighing the precipitate. For this purpose the precipitate may be dissolved in dilute nitric acid, the asbestos washed thoroughly, and the crucible reweighed.]

[Note 8. The details of this method of precipitation of zinc are fully discussed in an article by Dakin, !Ztschr. a.n.a.l. Chem.!, 39 (1900), 273.]

DETERMINATION OF SILICA IN SILICATES

Of the natural silicates, or artificial silicates such as slags and some of the cements, a comparatively few can be completely decomposed by treatment with acids, but by far the larger number require fusion with an alkaline flux to effect decomposition and solution for a.n.a.lysis. The procedure given below applies to silicates undecomposable by acids, of which the mineral feldspar is taken as a typical example. Modifications of the procedure, which are applicable to silicates which are completely or partially decomposable by acids, are given in the Notes on page 155.

PREPARATION OF THE SAMPLE

Grind about 3 grams of the mineral in an agate mortar (Note 1) until no grittiness is to be detected, or, better, until it will entirely pa.s.s through a sieve made of fine silk bolting cloth. The sieve may be made by placing a piece of the bolting cloth over the top of a small beaker in which the ground mineral is placed, holding the cloth in place by means of a rubber band below the lip of the beaker. By inverting the beaker over clean paper and gently tapping it, the fine particles pa.s.s through the sieve, leaving the coa.r.s.er particles within the beaker. These must be returned to the mortar and ground, and the process of sifting and grinding repeated until the entire sample pa.s.ses through the sieve.

[Note 1: If the sample of feldspar for a.n.a.lysis is in the ma.s.sive or crystalline form, it should be crushed in an iron mortar until the pieces are about half the size of a pea, and then transferred to a steel mortar, in which they are reduced to a coa.r.s.e powder. A wooden mallet should always be used to strike the pestle of the steel mortar, and the blows should not be sharp.

It is plain that final grinding in an agate mortar must be continued until the whole of the portion of the mineral originally taken has been ground so that it will pa.s.s the bolting cloth, otherwise the sifted portion does not represent an average sample, the softer ingredients, if foreign matter is present, being first reduced to powder. For this reason it is best to start with not more than the quant.i.ty of the feldspar needed for a.n.a.lysis. The mineral must be thoroughly mixed after the grinding.]

FUSION AND SOLUTION

PROCEDURE.--Weigh into platinum crucibles two portions of the ground feldspar of about 0.8 gram each. Weigh on rough balances two portions of anhydrous sodium carbonate, each amounting to about six times the weight of the feldspar taken for a.n.a.lysis (Note 1). Pour about three fourths of the sodium carbonate into the crucible, place the latter on a piece of clean, glazed paper, and thoroughly mix the substance and the flux by carefully stirring for several minutes with a dry gla.s.s rod, the end of which has been recently heated and rounded in a flame and slowly cooled. The rod may be wiped off with a small fragment of filter paper, which may be placed in the crucible. Place the remaining fourth of the carbonate on the top of the mixture. Cover the crucible, heat it to dull redness for five minutes, and then gradually increase the heat to the full capacity of a Bunsen or Tirrill burner for twenty minutes, or until a quiet, liquid fusion is obtained (Note 2).