Part 1 (1/2)
Life Movements in Plants.
Volume II.
1919.
by Sir Jagadis Chunder Bose.
PREFACE.
I have in the present volume dealt with the intricate phenomena of different tropisms. The movements in plants under the stimuli of the environment--the twining of tendrils, the effect of temperature, the action of light inducing movements sometimes towards and at other times away from the stimulus, the diametrically opposite responses of the shoot and the root to the same stimulus of gravity, the day and night positions of organs of plants--these, and many others present such diversities that it must have appeared a hopeless endeavour to discover any fundamental reaction applicable in all cases. It has therefore been customary to a.s.sume different sensibilities especially evolved for the advantage of the plant. But teleological argument and the use of descriptive phrases, like positive and negative tropism, offer no real explanation of the phenomena. Thus to quote Pfeffer ”When we say that an organ curves towards a source of illumination, because of its heliotropic irritability we are simply expressing an ascertained fact in a conveniently abbreviated form, without explaining why such curvature is possible or how it is produced.... Many observers have unfortunately devoted their attention to artificially cla.s.sifying the phenomenon observed, and have entirely neglected the explanation of causes underlying them.” He also adds that in regard to the phenomenon of growth and its variations, an empirical treatment is all that is possible in the present state of our knowledge; but deduction from results of experimental investigation ”still remains the ideal of physiology, and only when this ideal has been attained, shall we be able to obtain a comprehensive view of the interacting factors at work in the living organism.”
In my previous work on ”Plant Response” (1906) I described detailed investigations on irritability of plants which I carried out with highly sensitive recorders. The plant was thus made to tell its own story by means of its self-made records. The results showed that there is no specific difference in physiological reaction of different organs to justify the a.s.sumption of positive and negative irritabilities. A generalisation was obtained which gave a complete explanation of diverse movements in plants. The results were fully confirmed by an independent method of inquiry, namely that of electric response, which I have been able to elaborate so as to become a very important means of research.
The investigations described in the present volume not only support the conclusions reached in my earlier works, but have led to important additions. It is evident that the range of our investigation is limited only by our power of recording the rate of plant-movement, that is to say, in the measurement of length and time. In these respects the instruments that I have been able to devise have surpa.s.sed my sanguine expectations. The Resonant Recorder traces time-intervals as short as a thousandth part of a second, while my Balanced Crescograph enables us to measure variation of rate of growth as minute as 1/1000 millionth of an inch per second, the sensitiveness of this apparatus thus rivals that of the spectroscope. The increasing refinement in our experimental methods cannot but lead to important advances towards a deeper understanding of underlying reactions in the living organism.
I shall here draw attention to only a few of the important results given in the present volume. The tropic effect of light has been shown to have a definite relation to the quant.i.ty of incident light. A complete tropic curve has been obtained from sub-minimal to maximal stimulation which shows the inadequacy of Weber's law, for the sub-minimal stimulus induces a _qualitative_ difference in physiological reaction. It has further been shown that the prevalent idea that perception and heliotropic excitation are two distinct phenomena is without any foundation.
With reference to the effect of ether waves on plants, I have given an account of my discovery of the response of all plants to wireless stimulation, the results being similar to that induced by visible light.
The perceptive range of the plant is thus infinitely greater than ours; for it not only perceives, but also responds to different rays of the vast ethereal spectrum.
The results obtained by the method of geo-electric response show that the responsive reaction of the root is in no way different from that of the shoot, the opposite movements being due to the fact that in the shoot the stimulation is direct, and in the root it is indirect.
Full description is given of the new method of physiological exploration by means of the electric probe, by which the particular layer which perceives the stimulus of gravity is definitely localised. The method of electric probe is also found to be of extended application in the detection of physiological changes in the interior of an organ.
An important factor of nyct.i.tropic movements, hitherto unsuspected, is the effect of variation of temperature on geotropic curvature. This and other co-operative factors have been fully a.n.a.lysed, and a satisfactory explanation has been offered of various types of diurnal movement.
A generalisation has been obtained which explains all the diverse movements of plants, under all modes of stimulation: _it has been shown that direct stimulation induces contraction and r.e.t.a.r.dation of growth, and that indirect stimulation induces an expansion and acceleration of growth._
Another generalisation of still greater importance is the establishment of identical nature of physiological reaction in the plant and the animal, leading to advances in general physiology. Thus the discovery of a method for immediate enhancement or inhibition of nervous impulse in the plant led to my success in the control of nervous impulse in the animal. Another important discovery was the dual nervous impulses in plants, and I have very recently been able to establish, that the nervous impulse generated in the animal nerve by stimulus is not single, but double.
The study of the responsive phenomena in plants must thus form an integral part of physiological investigation into various problems relating to the irritability of all living tissues, and without such study the investigation must in future remain incomplete.
_October 1919._
J. C. BOSE.
PART III.
TROPISM IN PLANTS.
XXII.--THE BALANCED CRESCOGRAPH
_By_
SIR J. C. BOSE.