Part 13 (1/2)
43. Seyfarth, R.M., and Cheney, D.L. (2003). Signalers and receivers in animal communication. Annual Review of Psychology 54: 14573.
44. Fitch, W.T., Neubauer, J., Herzel, H. (2002). Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behaviour 63: 40718.
45. Mitani, J., and Nis.h.i.+da, T. (1993). Contexts and social correlates of long-distance calling by male chimpanzees. Animal Behaviour 45: 73546.
46. Corballis, M.C. (1999). The gestural origins of language. American Scientist 87: 13845.
47. Rizzolatti, G., and Arbib, M.A. (1998). Language within our grasp. Trends in Neurosciences 21: 18894.
48. Hopkins, W.D., and Cantero, M. (2003). From hand to mouth in the evolution of language: The influence of vocal behavior on lateralized hand use in manual gestures by chimpanzees (Pan troglodytes). Developmental Science 6: 5561.
49. Meguerditchian, A., and Vauclair, J. (2006). Baboons communicate with their right hand. Behavioral Brain Research 171: 17074.
50. Iverson, J.M., and Goldin-Meadow, S. (1998). Why people gesture when they speak. Nature 396: 228.
51. Senghas, A. (1995). The development of Nicaraguan sign language via the language acquisition process. In MacLaughlin, D., and McEwen, S. (eds.), Proceedings of the 19th Annual Boston University Conference on Language Development (pp. 54352). Boston: Cascadilla Press.
52. Neville, H.J., Bavalier, D., Corina, D., Rauschecker, J., Karni, A., Lalwani, A., Braun, A., Clark, V., Jezzard, P., and Turner, R. (1998). Cerebral organization for language in deaf and hearing subjects: Biological constraints and effects of experience. Proceedings of the National Academy of Sciences 95: 92229.
53. Rizzolatti, G., Foga.s.si, L., and Gallese, V. (2004). Cortical mechanisms subserving object grasping, action understanding, and imitation. In Gazzaniga, M.S. (ed.), The Cognitive Neurosciences, vol. 3 (pp. 42740). Cambridge, MA: MIT Press.
54. Kurata, K., and Tanji, J. (1986). Premotor cortex neurons in macaques: Activity before distal and proximal forelimb movements. Journal of Neuroscience 6: 40311.
55. Rizzolatti, G., et al. (1988). Functional organization of inferior area 6 in the macaque monkey, II: Area F5 and the control of distal movements. Experimental Brain Research 71: 491507.
56. Gentillucci, M., et al. (1988). Functional organization of inferior area 6 in the macaque monkey, I: Somatotopy and the control of proximal movements. Experimental Brain Research 71: 47590.
57. Hast, M.H., et al. (1974). Cortical motor representation of the laryngeal muscles in Macaca mulatta. Brain Research 73: 22940.
58. For a review, see: Rizzolatti, G., Foga.s.si, L., and Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience 2: 66170.
59. Goodall, J. (1986). The Chimpanzees of Gombe: Patterns of Behavior. Cambridge, MA: Belknap Press of Harvard University.
60. Crockford, C., and Boesch, C. (2003). Context-specific calls in wild chimpanzees, Pan troglodytes verus: a.n.a.lysis of barks. Animal Behaviour 66: 11525.
61. Barzini, L. (1964). The Italians. New York: Atheneum.
62. LeDoux, J.E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience 23: 15584.
63. LeDoux, J.E. (2003). The self: Clues from the brain. Annals of the New York Academy of Sciences 1001: 295304.
64. Wrangham, R., and Peterson, D. (1996). Demonic Males: Apes and the Origins of Human Violence. Boston: Houghton Mifflin.
65. McPhee, J. (1984). La Place de la Concorde Suisse. New York: Farrar, Straus & Giroux.
66. Damasio, A.R. (1994). Descartes' Error. New York: Putnam.
67. Ridley, M. (1993). The Red Queen (p. 244). New York: Macmillan.
Chapter 3: BIG BRAINS AND EXPANDING SOCIAL RELATIONs.h.i.+PS.
1. Roes, F. (1998). A conversation with George C. Williams. Natural History 107 (May): 1013.
2. Hamilton, W.D. (1964). The genetical evolution of social behaviour, I and II. Journal of Theoretical Biology 7: 116 and 1752.
3. Wilson, D.S., and Wilson, E.O. (2008). Rethinking the theoretical foundation of sociobiology. Quarterly Review of Biology, in press.
4. Trivers, R. (1971). The evolution of reciprocal altruism. Quarterly Review of Biology 46: 3537.
5. Tooby, J., Cosmides, L., and Barrett, H.C. (2005). Resolving the debate on innate ideas: Learnability constraints and the evolved interpenetration of motivational and conceptual functions. In Carruthers, P., Laurence, S., and Stich, S. (eds.), The Innate Mind: Structure and Content. New York: Oxford University Press.
6. Trivers, R.L., and Willard, D. (1973). Natural selection of parental ability to vary the s.e.x ratio. Science 7: 9092.
7. Clutton-Brock, T.H., and Vincent, A.C.J. (1991). s.e.xual selection and the potential reproductive rates of males and females. Nature 351: 5860.
8. Clutton-Brock, T.H. (1989) Mammalian mating systems. Proceedings of the Royal Society of London, Series B: Biological Sciences 236: 33972.
9. Clutton-Brock, T.H. (1991). The Evolution of Parental Care. Princeton, NJ: Princeton University Press.
10. Trivers, R.L. (1972). Parental investment and s.e.xual selection. In Campbell, B. (ed.), s.e.xual Selection and the Descent of Man 18711971 (pp. 13679). Chicago: Aldine.
11. Geary, D.C. (2004). The Origin of Mind. Was.h.i.+ngton, DC: American Psychological a.s.sociation.
12. Jerrison, H.J. (1973). Evolution of the Brain and Intelligence. New York: Academic Press.
13. Wynn, T. (1988). Tools and the evolution of human intelligence. In Byrne, W.B., and White, A. (eds.), Machiavellian Intelligence. Oxford: Clarendon Press.
14. Pinker, S. (1997). How the Mind Works (p. 195). New York: W.W. Norton.
15. Wrangham, R.W., and Conklin-Brittain, N. (2003). Cooking as a biological trait. Comparative Biochemistry and Physiology: Part A 136: 3546.
16. Boback, S.M., c.o.x, C.L., Ott, B.D., Carmody, R., Wrangham, R.W., and Secor, S.M. (2007). Cooking and grinding reduces the cost of meat digestion. Comparative Biochemistry and Physiology: Part A 148: 65156.
17. Lucas, P. (2004). Dental Functional Morphology: How Teeth Work. Cambridge: Cambridge University Press.
18. Oka, K., Sakuarae, A., Fujise, T., Yos.h.i.+matsu, H., Sakata, T., and Nakata, M. (2003). Food texture differences affect energy metabolism in rats. Journal of Dental Research 82: 49194.
19. Broadhurst, C.L., w.a.n.g, Y., Crawford, M.A., Cunnane, S.C., Parkington, J.E., and Schmidt, W.F. (2002). Brain-specific lipids from marine, lacustrine, or terrestrial food resources: Potential impact on early African h.o.m.o sapiens. Comparative Biochemistry and Physiology 131B: 65373.
20. Crawford, M.A., Bloom, M., Broadhurst, C.L., Schmidt, W.F., Cunnane, S.C., Galli, C., Gehbremeskel, K., Linseisen, F., Lloyd-Smith, J., and Parkington, J. (1999). Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids 34 Suppl: S3947.
21. Broadhurst, C.L., Cunnane, S.C., and Crawford, M.A. (1998). Rift Valley lake fish and sh.e.l.lfish provided brain-specific nutrition for early h.o.m.o. British Journal of Nutrition 79: 321.
22. Carlson, B.A., and Kingston, J.D. (2007). Docosahexaenoic acid, the aquatic diet, and hominid encephalization: Difficulties in establis.h.i.+ng evolutionary links. American Journal of Human Biology 19: 13241.
23. Byrne, R.W., and Corp, N. (2004). Neocortex size predicts deception rate in primates. Proceedings of the Royal Society of London, Series B: Biological Sciences 271: 169399.