Part 2 (1/2)

The industry was slow, painful, and uncertain, only because the mechanic arts were pursued only to an extent possible with the skill and muscular energy of men. There were none of the wonderful automatic mechanisms that we know as machine-tools. There was only the almost unaided human arm with which to subdue the boundless savagery of a continent, and win independence and form a nation besides. The demand for huge ma.s.ses of the most essential of the factors of civilization has grown since, because the ironclad and the big gun have come, and those inadequate forces and crude methods supplied for a time the demand that was small and imperative. The largest ma.s.s made then, and frequently spoken of in colonial records, was a piece called a ”sow;” spelled then ”sowe.” It was a long, triangular ma.s.s, cast by being run into a trench made in sand. [Footnote: When, later, little side-trenches were made beside the first, with little channels to carry the metal into them, the smaller castings were naturally called ”pigges.” Hence our ”pig-iron.”]

[Ill.u.s.tration: MAKING A TRENCH TO CAST A ”SOWE.”]

Those were the palmy days of the ”trip hammer.” Nasmyth was not born until 1808, and no machine inventor had yet come upon the scene. The steam-hammer that bears his name, which means a ponderous and powerful machine in which the hammer is lifted by the direct action of steam in a piston, the lower end of whose rod is the hammer-head, has done more for the development of the iron industry than any other mechanical invention. It was not actually used until 1842, or '43. It finally, with many improvements in detail, grew into a monster, the hammer-head, or ”tup,” being a ma.s.s of many tons. And they of modern times were not content merely to let this great ma.s.s fall. They let in steam above the piston, and jammed it down upon the ma.s.s of glowing metal, with a shock that jars the earth. The strange thing about this t.i.tanic machine is that it can crack an egg, or flatten out a ton or more of glowing iron.

Hundreds of the forgings of later times, such as the wrought iron or steel frames of locomotives, and the shafts of steamers, and the forged modern guns, could not be made by forging without this steam hammer.

[Ill.u.s.tration: THE STEAM HAMMER.]

Then slowly came the period of all kinds of ”machine tools.” During the period briefly described above they could not make sheet metal. The rolling mill must have come, not only before the modern steam-boiler, but even before the modern plow could be made. Can the reader imagine a time in the United States when sheet metal could not be rolled, and even tin plates were not known? If so, he can instantly transport himself to the times of the wooden ”trencher,” and the ”pewter” mug and pitcher, to the days when iron rails for tramways were unknown, and when even the ”strap-iron,” always necessary, was rudely and slowly hammered out on an anvil. [Footnote: About 1720, nails were the most needed of all the articles of a new country. Farmers made them for themselves, at home.

The secret of how to roll out a sheet and split it into nail-rods was stolen from the one shop that knew how, at Milton, Ma.s.s., to give to another at Mlddleboro. The thief had the Biblical name of Hashay H.

Thomas. He stole the secret while the hands of the Milton mill were gone to dinner, and served his country and broke up a small monopoly in so doing.]

Shears came with the ”rolls;” vast engines of gigantic biting capacity, that cut sheets of iron as a lady's scissors cut paper. This cut the squares of metal used for boiler plates, and the steam-engine having come, was turned to the manufacture of materials for its own construction. Others were able to bite off great bars.

The first mill in which iron was rolled in America, was built in 1817 near Connellsville, in Fayette county, Penn. Until 1844, the rolling mills of this country produced little more than bar-iron, hoops, and plates. All the early attempts at railroads used the ”strap” rail; unless cast ”fish-bellies” were used; which was flat bar-iron provided with counter sunk holes, in which to drive nails for holding the iron to long stringers of wood laid upon ties. When actual rail-making for railroads began, the rolling mill raised its powers to meet the emergency. The ”T” rail, universally now used, was invented by Robert Stevens, president and chief engineer of the Camden and Amboy railroad, and the first of them were laid as track for that road in 1832. From this time until 1850, rolling mills for making ”U” and ”T” rails rapidly increased in number, but in that year all but two had ceased to be operated because of foreign compet.i.tion.

[Ill.u.s.tration: SHEARS FOR CUTTING BAR-IRON.]

During some five years previous to this writing a revolution has taken place in the construction of buildings which has resulted in what is known as the ”sky-sc.r.a.per.” This was, in many respects, the most startling innovation of times that are startling in most other respects, and was begun in that metropolis of surprises and successes, the city of Chicago. This innovation was really such in the matter of using steel in the entire framing of a commercial building, but it was not the first use of metal as a building material. The first iron beams used in buildings were made in 1854, in a rolling mill at Trenton, N. J., and were used in the construction of the Cooper Inst.i.tute, and the building of Harper & Brothers. For these special rolls, of a special invention, were made. These have now become obsolete, and a new arrangement is used for what are known as ”structural shapes.”

[Ill.u.s.tration: HYDRAULIC SHEARS. THE KNIFE HAS A PRESSURE OF 3,000 TONS, CLIPPING PIECES OF IRON TWO BY FOUR FEET.]

I have spoken of the use of wood-fuel in the early stages of iron manufacture in this country, followed by the adoption exclusively of coal and its products. Then, many years later, came the departure from this in the use of gas for fuel. The first use of this kind is said to date as far back as the eighth century, and modifications of the idea had been put in practice in this country, in which gas was first made from coal and then used as fuel. Then came ”natural gas.” This product has been known for many centuries. It was the ”eternal” fuel of the Persian fire-wors.h.i.+ppers, and has been used as fuel in China for ages.

Its earliest use in this country was in 1827, when it was made to light the village of Fredonia, N. Y. Probably its first use for manufacturing purposes was by a man named Tompkins, who used it to heat salt-kettles in the Kenawha valley in 1842. Its next use for manufacturing purposes was made in a rolling mill in Armstrong county, Penn., in 1874, forty-seven years after it had been used at Fredonia, and twenty-nine years after it had been used to boil salt.

Now the use of natural gas as manufacturing fuel is universal, not alone over the spot where the gas is found, but in localities hundreds of miles away. It is one of the strangest developments of modern scientific ingenuity. That enormous battery of boilers, which was one of the most imposing spectacles of the Columbian Exhibition of 1893, whose roar was like that of Niagara, was fed by invisible fuel that came silently in pipes from a state outside of that where the great fair was held. We are left to the conclusion that the making of the coal into gas at the mine, and the s.h.i.+pping of it to the place of consumption through pipes, is more certain of realization than were a hundred of the early problems of American progress that have now been successful for so long that the date of their beginning is almost forgotten.

THE STEEL OF THE PRESENT.--The story of steel has now almost been told, in that general outline which is all that is possible without an extensive detail not interesting to the general reader. In it is included, of necessity, a resume of the progress, from the earliest times in this country, of the great industry which is more indicative than any other of the material growth of a nation. I now come to that time when steel began to take the place that iron had always held in structural work of every cla.s.s. The differences between this structural steel and that which men have known by the name exclusively from remote ages, I have so far indicated only by reference to the well-known qualities of the latter. It now remains to describe the first.

In 1846 an American named William Kelley was the owner of an iron-works at Eddyville, Ky. It was an early era in American manufactures of all kinds, and the district was isolated, the town not having five hundred inhabitants, and the best mechanical appliances were remote.

In 1847, Kelley began, without suggestion or knowledge of any experiments going on elsewhere, to experiment in the processes now known as the ”Bessemer,” for the converting of iron into steel. To him occurred, as it now appears first, the idea that in the refining process fuel would be unnecessary after the iron was melted if _powerful blasts of air were forced into the fluid metal_. This is the basic principle of the Bessemer process. The theory was that the heat generated by the union of the oxygen of the air with the carbon of the metal, would accomplish the refining. Kelley was trying to produce malleable iron in a new, rapid and effective way. It was merely an economy in manufacture he was endeavoring to attain.

To this end he made a furnace into which pa.s.sed an air-blast pipe, through which a stream of air was forced into the ma.s.s of melted metal.

He produced refined iron. Following this he made what is now called a ”converter,” in which he could refine fifteen hundred pounds of metal in five minutes, effecting a great saving in time and fuel, and in his little establishment the old processes were thenceforth dispensed with.

It was locally known as ”Kelley's air-boiling process.” It proved finally to be the most important, in large results, ever conceived in metallurgy. I refer to it hurriedly, and do not attempt to follow the inventor's own description of his constructions and experiments. When he heard that others in England were following the same line of experiment, he applied for a patent. He was decided to be the first inventor of the process, and a patent was granted him over Bessemer, who was a few days before him. There is no question that others were more skillful, and with better opportunities and scientific a.s.sociations, in carrying out the final details, mechanical and chemical, which have completed the Kelley process for present commercial uses. Neither is there any question that this back-woods iron-making American was the first to refine iron by pa.s.sing through it, while fluid, a stream of air, which is the process of making that steel which is not tool steel, and yet is steel, the now almost universal material for the making of structures; the material of the Ferris wheel, the wonderful palaces of the Columbian exposition, the sky-sc.r.a.pers of Chicago, the rails, the tacks, [Footnote: In the history of Rhode Island, by Arnold, it is claimed that the first cold cut nails in the world were made by Jeremiah Wilkinson, in 1777. The process was to cut them from an old chest-lock with a pair of shears, and head them in a smith's vise. Then small nails were cut from old Spanish hoops, and headed in a vise by hand. Needles and pins were made by the same person from wire drawn by himself. Supposing this to be the beginning of the cut-nail idea, _the machine for making them_ would still remain the actual and practical invention, since it would mark the beginning of the industry as such. The importance of the latter event may be measured by the fact that about the end of the last century there began a strong demand. In the homely farm-houses, or the little contracted shops of New England villages, the descendants of the Pilgrims toiled providently, through the long winter months, at beating into shape the little nails which play so useful a part in modern industry. A small anvil served to beat the wire or strip of iron into shape and point it; a vise worked by the foot clutched it between jaws furnished with a gauge to regulate the length, leaving a certain portion projecting, which, when beaten flat by a hammer, formed the head. This was industry, but not manufacture, for in 1890 the manufacturers of this country produced over _eight hundred million pounds_ of iron, steel, and wire nails, representing a consumption of this absolutely indispensable manufacture for that year, at the rate of over _twelve pounds_ for each individual inhabitant of the United States.] the fence-wire, the sheet-metal, the rails of the steam-railroads and the street-lines, the thousand things that cannot be thought of without a list, and which is a material that is furnished more cheaply than the old iron articles were for the same purposes.

[Ill.u.s.tration: SECTIONAL VIEW OF A BESSEMER ”CONVERTER.”]

The technical detail of steel-making is exceedingly interesting to students of applied science, but it _is_ detail, the key to which is in the process mentioned; the forcing of a stream of air through a molten ma.s.s of iron. The ”converter” is a huge pitcher-shaped vessel, hung upon trunnions so as to be tilted, and it is usual to admit through these trunnions, by means of a continuing pipe, the stream of air. The converters may contain ten tons or more of liquid metal at one time, which ma.s.s is converted from iron into steel at one operation.

Forty-five years ago, or less, works that could turn out fifty tons of iron in a day were very large. Now there are many that make _five hundred tons_ of steel in the same time. Then, nearly all the work was done by hand, and men in large numbers handled the details of all processes. Now it would be impossible for human hands and strength to do the work. The steel-mill is, indeed, the most colossal combination of Steam and Steel. There are tireless arms, moved by steam, insensible alike to monstrous strains and white heat, which seize the vast ingots and carry them to and fro, handling with incredible celerity the ma.s.ses that were unknown to man before the invention of the Bessemer process.

And all these operations are directed and controlled by a man who stands in one place, strangely yet not inappropriately named a ”pulpit,” by means of the hand-gear that gives them all to him like toys.

No one who has seen a steel-mill in operation, can go away and really write a description of it; no artist or camera has ever made its portrait, yet it is the most impressive scene of the modern, the industrial, world. There is a ”fervent heat,” surpa.s.sing in its impressions all the descriptions of the Bible, and which destroys all doubt of fire with capacity to burn a world and ”roll the heavens together as a scroll.” There is a clang and clatter accompanying a marvelous order. There are clouds of steam. There are displays of sparks and glow surpa.s.sing all the pyrotechnics of art. Monstrous throats gasp for a draught of white-hot metal and take it at a gulp. Glowing ma.s.ses are trundled to and fro. There are mountains of ore, disappearing in a night, and ever renewed. There is a railway system, and the huge ma.s.ses are conveyed from place to place by locomotive engines. There is a water system that would supply a town. There may be miles of underground pipes bringing gas for fuel. Amid these scenes flit strong men, naked to the waist, unharmed in the red pandemonium, guiding every process, superintending every result; like other men, yet leading a life so strange that it is apparently impossible. The glowing rivers they escape; corruscating showers of flying white-hot metal do not fall upon them; the leaping, roaring, hungry, annihilating flames do not touch them; the gurgling streams of melted steel are their familiar playthings; yet they are but men.

The ”rolling” of these slabs and ingots into rails is a following operation still. The continuous rail is often more than a hundred feet in length, which is cut into three or four rails of thirty feet each, and it goes through every operation that makes it a ”T” rail weighing ninety pounds to the yard with the single first heat. There are trains of rolls that will take in a piece of white-hot metal weighing six tons, and send it out in a long sheet three thirty-seconds of an inch thick and nearly ten feet wide. The first steel rails made in this country were made by the Chicago Rolling Mill Company, in May, 1865. Only six rails were then made, and these were laid in the tracks of the Chicago and North Western Railroad. It is said they lasted over ten years. The first nails, or tacks, were made of steel at Bridgewater, Ma.s.s., at about the same date.

[Ill.u.s.tration: ROLLING INGOTS.]