Part 5 (1/2)
Finally, after some weeks delay, it was decided to introduce what has become the most familiar feature of the landscape of civilization, and string the wires on poles. There is little need to follow the enterprise further. Morse stayed with one instrument in the Capitol at Was.h.i.+ngton, and Vail carried another with him at the end of the line. Already the type-and-rule and all the symbols and dictionaries had been discarded, and the dot-and-dash alphabet was subst.i.tuted. On April 23d, 1844, Vail subst.i.tuted the earth for the metallic circuit as an experiment, and that great step both in knowledge and in practice was taken.
Within an incredibly brief s.p.a.ce the Morse Electric Telegraph had spread all over the world. No man's triumph was ever more complete. He pa.s.sed to those riches and honors that must have been to him almost as a fulfilled dream. In Europe his progresses were like those of a monarch.
He was made a member of almost all of the learned societies of the world, and on his breast glittered the medals and orders that are the insignia of human greatness. A congress of representatives of ten of the governments of Europe met in Paris in 1858, and it was unanimously decided that the sum of four hundred thousand francs--about a hundred thousand dollars--should be presented to him. He died in New York in 1872.
[Ill.u.s.tration: PROF. HENRY'S ELECTROMAGNET AND ARMATURE]
Yet not a single feature of the invention of Morse, as formulated in his caveat and described in his original patent, is to be found among the essentials of modern telegraphy. They had mostly been abandoned before the first line had been completed, and the arrangements of his a.s.sociate, Vail, were subst.i.tuted. Professor Joseph Henry had, in 1832, constructed an electromagnetic telegraph whose signals were made by sound, as all signals now are in the so-called Morse system. He hung a bar-magnet on a pivot in its center as a compa.s.s-needle is hung. He wound a U-shaped piece of soft iron with insulated wire, and made it an electro-magnet, and placed the north end of the magnetized bar between the two legs of this electro-magnet. When the latter was made a magnet by the current the end of the bar thus placed was attracted by one leg of the magnet and repelled by the other, and was thus caused to swing in a horizontal plane so that the opposite end of it struck a bell. Thus was an electric telegraph made as an experimental toy, and fulfilling all the conditions of such an one giving the signals by sound, as the modern telegraph does. It lacked one thing--the essential. [Footnote: The details of the construction of the modern telegraph line are not here stated. There are none that change, in principle, the outline above given.]
The Vail telegraphic alphabet had not been thought of. Had such an idea been conceived previously a message could have been read as it is read now, and with the toy of Professor Henry which he abandoned without an idea of its utility or of the possibilities of any telegraph as we have long known them. Morse knew these possibilities. He was one of the innumerable eccentrics who have been right, one of the prophets who have been in the beginning without honor, not only in respect to their own country, but in respect to their times.
[Ill.u.s.tration: DIAGRAM OF TELEGRAPH SYSTEM.]
CHAPTER II.
THE OCEAN CABLE.--The remaining department of Telegraphy is embodied in the startling departure from ancient ideas of the possible which we know as cable telegraphy, the messages by such means being _cablegrams_.
About these ocean systems there are many features not applying to lines on land, though they are intended to perform the same functions in the same way, with the same object of conveying intelligence in language, instantly and certainly, but under the sea.
The marine cables are not simple wires. There is in the center a strand of usually seven small copper wires, intended as the conductor of the current. These, twisted loosely into a small cable, are surrounded by repeated layers of gutta-percha, which is, in turn, covered with jute.
Outside of all there is an armor of wires, and the entire cable appears much like any other of the wire cables now in common use with elevators, bridges, and for many purposes. In the shallow waters of bays and harbors, where anchors drag and the like occurrences take place, the armor of a submarine cable is sometimes so heavy as to weigh more than twenty tons to the mile.
There are peculiar difficulties encountered in sending messages by an ocean cable, and some of these grow out of the same induction whose laws are indispensable in other cases. The inner copper core sets up induction in the strands of the outer armor, and that again with the surrounding water. There is, again, a species of re-induction affecting the core, so that faint impulses may be received at the terminals that were never sent by the operators. All of these difficulties combined result in what electricians term ”r.e.t.a.r.dation.” It is one of the departments of telegraphy that, like the unavoidable difficulties in all machines and devices, educates men to their special care, and keeps them thinking. It is one of the natural features of all the mechanical sciences that results in the continual making of improvements.
The first impression in regard to ocean cables would be that very strong currents are used in sending impulses so far. The opposite is true. The receiving instrument is not the noisy ”sounder” of the land lines. There was, until recently, a delicate needle which swung to and fro with the impulses, and reflected beams of light which, according to their number and the s.p.a.ce between them spelled out the message according to the Vail dot-and-dash alphabet. Now, however, a means still more delicate has been devised, resulting in a faint wavy ink-line on a long, unwinding slip of paper, made by a fountain pen. This strange ma.n.u.script may be regarded as the latest system of writing in the world, having no relations.h.i.+p to the art of Cadmus, and requiring an expert and a special education to decipher it. Those faint pulsations, from a hand three thousand miles away across the sea, are the realization of a magic incredible. The necromancy and black art of all antiquity are childish by comparison. They give but faint indications of what they often are--the messages of love and death; the dictations of statesmans.h.i.+p; the heralds of peace or war; the orders for the disposition of millions of dollars.
The story of the laying of the first ocean cable is worthy of the telling in any language, but should be especially interesting to the American boy and girl. It is a story of native enterprise and persistence; perhaps the most remarkable of them all.
The earliest ocean telegraph was that laid by two men named Brett, across the English Channel. For this cable, a pioneer though crossing only a narrow water, the conservative officials of the British government refused a charter. In August, 1850, they laid a single copper wire covered with gutta-percha from Dover in England to the coast of France. The first wire was soon broken, and a second was made consisting of several strands, and this last was soon imitated in various short reaches of water in Europe.
But the Atlantic had always been considered unfathomable. No line had ever sounded its depths, and its strong currents had invariably swept away the heaviest weights before they reached its bed. Its great feature, so far as known, was that strange ocean river first noted and described by Franklin, and known to us as the Gulf Stream. In 1853 a circ.u.mstance occurred which again turned the attention of a few men to the question of an Atlantic cable. Lieutenant Berryman, of the Navy, made a survey of the bottom of the Atlantic from Newfoundland to Ireland, and the wonderful discovery was made that the floor of the ocean was a vast plain, not more than two miles below the surface, extending from one continent to the other. This plain is about four hundred miles wide and sixteen hundred long, and there are no currents to disturb the ma.s.s of broken sh.e.l.ls and unknown fishes that lie on its oozy surface. It was named the ”Telegraphic Plateau,” with a view to its future use. At either edge of this plateau huge mountains, from four to seven thousand feet high, rise out of the depths. There are precipices of sheer descent down which the cable now hangs. The Azores and Bermudas are peaks of ocean mountains. The warm river known as the Gulf Stream, coming northward meets the ice-bergs and melts them, and deposits the sh.e.l.ls, rocks and sand they carry on this plain. When it was discovered the difficulty in the way of an Atlantic cable seemed no longer to exist, and those who had been anxious to engage in the enterprise began to bestir themselves.
Of these the most active was the American, Cyrus W. Field. He began life as a clerk in New York City. When thirty-five years old he became engaged in the building of a land line of telegraph across Newfoundland, the purpose of which was to transmit news brought by a fast line of steamers intended to be established, and the idea is said to have occurred to him of making a line not only so far, but across the sea. In November, 1856, he had succeeded in forming a company, and the entire capital, amounting to 350,000 pounds, was subscribed. The governments of England and the United States promised a subsidy to the stockholders.
The cable was made in England. The _Niagara_ was a.s.signed by the United States, and the _Agamemnon_ by England, each attended by smaller vessels, to lay the cable. In August, 1857, the Niagara left the coast of Ireland, dropping her cable into the sea. Even when it dropped suddenly down the steep escarpment to the great plateau the current still flowed. But through the carelessness of an a.s.sistant the cable parted. That was the beginning of mishaps. The task was not to be so easily done, and the enterprise was postponed until the following year.
That next year was still more memorable for triumph and disappointment.
It was now designed that the two vessels should meet in mid-ocean, unite the ends of the cable, and sail slowly to opposite sh.o.r.es. There were fearful storms. The huge _Agamemnon_, overloaded with her half of the cable, was almost lost. But finally the spot in the waste and middle of the Atlantic was reached, the sea was still, and the vessels steamed away from each other slowly uncoiling into the sea their two halves of the second cable. It parted again, and the two s.h.i.+ps returned to Ireland.
In July they again met in mid-ocean. Europe and America were both charitably deriding the splendid enterprise. All faith was lost. It was known, to journalism especially, that the cable would never be laid and that the enterprise was absurd. But it was like the laying of the first land line. There was a way to do it, existing in the brains and faith of men, though at first that way was not known. From this third meeting the two s.h.i.+ps again sailed away, the _Niagara_ for America, the _Agamemnon_ for Valencia Bay. This time the wire did not part, and on August 29th, 1858, the old world and the new were bound together for the first time, and each could read almost the thoughts of the other.
The queen saluted America, and the president replied. There were salutes of cannon and the ringing of bells. But the messages by the cable grew indistinct day by day, and finally ceased. The Atlantic cable had been laid, and--had failed.
Eight years followed, and the cable lay forgotten at the bottom of the sea. The reign of peace on earth and good will to men had so far failed to come and they were years of tumult and bitterness. The Union of the United States was called upon to defend its integrity in a great war. A bitter enmity grew up between us and England. The telegraph, and all its persevering projectors, were almost absolutely forgotten. Electricians declared the project utterly impracticable, and it began, finally, to be denied that any messages had ever crossed the Atlantic at all, and Field and his a.s.sociates were discredited. It was said that the current could not be made to pa.s.s through so long a circuit. New routes were spoken of--across Bering's Strait, and overland by way of Siberia--and measures began to be taken to carry this scheme into effect.
Amid these discouragements, Field and his a.s.sociates revived their company, made a new cable, and provided everything that science could then suggest to aid final success. This new cable was more perfect than any of the former ones, and there was a mammoth side-wheel steamer known as the _Great Eastern_, unavailable as it proved for the ordinary uses of commerce, and this vessel was large enough to carry the entire cable in her hold. In July, 1865, the huge steamer left Ireland, dropping the endless coil into the sea. The same men were engaged in this last attempt that had failed in all the previous ones. It is one of the most memorable instances of perseverance on record. But on August 6th a flaw occurred, and the cable was being drawn up for repairs. The sound of the wheel suddenly stopped; the cable broke and sunk into the depths. The _Great Eastern_ returned unsuccessful to her port.
Field was present on board on this occasion, and had been present on several similar ones. There was, so far as known, no record made by him of his thoughts. There were now five cables in the bed of the Atlantic, and each one had carried down with it a large sum of money, and a still larger sum of hopes. Yet the Great Eastern sailed again in July, 1866, her tanks filled with new cable and Field once more on her decks. It was the last, and the successful attempt. The cable sank steadily and noiselessly into the sea, and on July 26th the steamer sailed into Trinity Bay. The connection was made at Heart's Content, a little New Foundland fis.h.i.+ng village, and one for this occasion admirably named.
Then the lost cable of 1865 was found, raised and spliced.