Part 7 (1/2)
He who made the first actual machine to evolve a current in compliance with Faraday's formulated laws was an Italian named Pixu, in 1832. His machine consisted of a horseshoe magnet set on a shaft, and made to revolve in front of two cores of, soft iron wound with wire, and having their ends opposite the legs of the magnet. Shortly after Pixu, the inventors of the times ceased to turn the magnet on a shaft, and turned the iron cores instead, because they were lighter. In like manner, the huge field magnets of a modern dynamo are not whirled round a stationary armature, but the armature is whirled within the legs of the magnet with very great rapidity. The next step was to increase the number of magnets and the number of wire-wound iron cores--bobbins. The magnets were made compound, laminated; a large number of thin horseshoe magnets were laid together, with opposite poles touching. These were all comparatively small machines--what we now, with some reason, regard as having been toys whose present results were rather long in coming.
[Ill.u.s.tration: THE SIEMENS' ARMATURE AND WINDING. THE FIRST STEP TOWARD THE MODERN DYNAMO.]
Then came Siemens, of Berlin, in 1857. He was probably the first to wind the iron core, what we now call the _armature_, with wire from end to end, _lengthwise_, instead of round and round as a spool. This resulted, of course, in the shaft of the armature being also placed crosswise to the legs of the magnet, as it is in the modern dynamo. One of the ends of the wire used in this winding was fastened to the axle of the armature, and the other to a ring insulated from the shaft, but turning with it. Two springs, one bearing on the shaft and the other on the ring, carried away the current through wires attached to them.
Siemens also originated the mechanical idea of hollowing out the legs of the magnet on the inside for the armature to turn in close to the magnet, almost fitting. It was the first time any of these things had been done, and their author probably had no idea that they would be prominent features of the dynamo of a little later time, in all essentials closely imitated.
[Ill.u.s.tration: DIAGRAM OF SHAFT, SPLIT RING AND ”BRUSHES.”]
It will be guessed from what has been previously said on the subject of induction that the currents from such an electro-magnetic machine would be alternating currents, the impulses succeeding each other in alternate directions. To remedy this and cause the currents to flow always in the same direction, the ”_commutator_” was devised. The ring mentioned above was split, and the two springs both bore upon it, one on each side. The ends of the wires were both fastened to this ring. The springs came to be known as ”brushes.” The effect was that one of them was in the insulated s.p.a.ce between the split halves of the ring while the other was bearing on the metal to which the wire was attached. This action was alternate, and so arranged that the current carried away was always direct. When an armature has a winding of more than one wire, as the practical dynamo always has, the insulated ring is divided into as many pieces as there are wires, and the two brushes act as above for the entire series.
Pacinotti, of Florence, constructed a magneto-electric machine in which the current flows always in one direction without a commutator. It has what is known as a _ring armature_, and is the mother of all dynamos built upon that principle. It is exceedingly ingenious in construction, and for certain purposes in the arts is extensively used.
A description of it is too technical to interest others than those personally interested in the cla.s.s of dynamo it represents.
Wilde, of Manchester, England, improved the Siemens machine in 1866 by doing that which is the feature that makes possible the huge ”field magnet” of the modern dynamo, which is not a magnet at all, strictly speaking. He caused the current, after it had been rectified by the commutator, to return again into coils of wire round the legs of his field magnets, as shown in the diagram. This induced in them a new supply of magnetism, and this of course intensified the current from the armature. It is true he had a separate smaller magneto-electric machine, with which he evolved a current for the coil around the legs of the field magnet of a greatly larger machine upon which he depended for his actual current, and that he did not know, although he was practically doing the same thing, that if he should divert this current made by the larger machine itself back through the coils of its field magnet, he would not need the extra small machine at all, and would have a much more powerful current.
[Ill.u.s.tration: SIMPLEST FORM OF DYNAMO]
And here arises a difference and a change of name. All generating machines to this date had been called ”_Magneto-electric_” because they used _permanent_ steel magnets with which to generate a current by the whirling of the bobbin which we now call an armature. The time came, led to by the improvement of Wilde, in which those steel permanent magnets were no longer used. Then the machine became the ”_dynamo-electric_” machine, and leaving off one word, according to our custom, ”_dynamo_.”
Siemens and Wheatstone almost simultaneously invented so much of the dynamo as was yet incomplete. It has ”cores”--the parts that answer to the legs of a horseshoe magnet--of soft iron, sometimes now even of cast iron. These, at starting, possess very little magnetism--practically none at all--yet sufficient to generate a very weak current in the coils, windings, of the armature when it begins to turn. This weak current, pa.s.sing through the windings of the field magnet, makes these still stronger magnets, and the effect is to evolve a still stronger current in the armature. Soon the full effect is reached. The big iron field magnet, often weighing some thousands of pounds, is then the same as a permanent steel horseshoe magnet, which would hardly be possible at all. One who has watched the installation of a dynamo, knowing that there is nowhere near any ordinary source of electricity, and has seen its armature begin to whirl and hum, and then in a few moments the violet sparklings of the brushes and the evident presence of a powerful current of electricity, is almost justified in the common opinion that the genius of man has devised a machine to _create_ something out of nothing. It is true that a _starting_ quant.i.ty of electricity is required. It exists in almost every piece of iron. Sometimes, to hasten first action, some cells of a galvanic battery are used to pa.s.s a current through the coils of the field magnet. After the first use there is always enough magnetism remaining in them during rest or stoppage to make a dynamo efficient after a few moments operation.
[Ill.u.s.tration: PACINOTTI'S RING-ARMATURE DYNAMO.]
This is the dynamo in principle of action. The varieties in construction now in use number scores, perhaps hundreds. Some of them are monsters in size, and evolve a current that is terrific. They are all essentially the same, depending for action upon the laws ill.u.s.trated in the simplest experiment in induced electricity. One of the best known of the modern machines is Edison's, represented in the picture at the head of this article. In it the field magnet--answering to the horseshoe magnet of the magneto-electric machine--is plainly distinguishable to the unskilled observer. It is not even solid, but is made of several pieces bolted together. Its legs are hollowed at the ends to admit closely the armature which turns there. There are valuable peculiarities in its construction, which, while complying in all respects with the dynamo principle, utilize those principles to the best mechanical advantage. So do others, in other respects that did not occur even to Edison, or were not adopted by him. Probably the modern dynamo is the most efficient, the most accurately measurable, the least wasteful of its power, and the most manageable, of any power-machine so far constructed by man for daily use.
The motor.--This is the twin of the dynamo. In all essentials the two are of the same construction. A difference in the arrangement of the terminals of the wire coils or the wrappings of armature and field magnet, makes of the one a dynamo and of the other a motor.
Nevertheless, they are separate studies in electrical science. Practice has brought about modified constructions, as in the case of the dynamo.
The differences between the two machines, and their similarities as well, may be explained by a general brief statement.
_It is the work of the dynamo to convert mechanical energy into the form of electrical energy. The motor, in turn, changes this electrical energy back again into mechanical energy._
Where the electric light is produced by the dynamo current no motor intervenes. The current is converted into heat and light by merely having an impediment, a restriction, a narrowness, interposed to its free pa.s.sage on a conducting wire, as heretofore explained, very much as water in a pipe foams and struggles at a narrow place or an obstruction.
Where mechanical movements are to be produced by the dynamo current the motor is always the intermediate machine. In the dynamo the armature is rotated by steam power, producing an electrical energy in the form of a powerful current transmitted by a wire. In the motor the armature, in turn, _is rotated by_ this current. It is but another instance of that ability to work backwards--to reverse a process--that seems to pervade all machines, and almost all processes. I have mentioned steam power, and, consequently, the necessary burning of coal and expenditure of money in producing the dynamo current. The dynamo and motor are not necessarily economical inventions, but the opposite when the force produced is to be transmitted again, with some loss, into the same mechanical energy that has already been produced by the burning of coal and the making of steam. Across miles of s.p.a.ce, and into places where steam would not be possible, the power is invisibly carried. Suggestions of this convenience--stated cases--it is not necessary to cite. The fact is a prominent one, to be noted everywhere.
And it may be made a mechanical economy. The most prominent instance of this is the new utilization of Niagara as a turbine water-power with which to whirl the armatures of gigantic dynamos, using the power thus obtained upon motors, and in the production of light and the transmission of power to neighboring cities.
The discovery of the possibility of transmitting power by a wire, and converting it again into mechanical energy, is a strange story of the human blindness that almost always attends an acuteness, a thinking power, a prescience, that is the characteristic of humanity alone, but which so often stops short of results. This discovery has been attributed to accident alone; the accident of an employe mistaking the uses of wires and fastening their ends in the wrong places. But a French electrician thus describes the occurrence as within his own experience.
His name is Hypolyte Fontaine.
But let us first advert to the forgetfulness of the man who really invented the machine that was capable of the opposite action of both dynamo and motor. This was the Italian, Pacinotti. [Footnote: Moses G.
Farmer, an American, and celebrated in his day for intelligent electrical researches, is claimed to have made the first reversible motor ever contrived. A small motor made by Farmer in 1847, and embodying the electro-dynamic principle was exhibited at the great exposition at Chicago in 1893. If the genealogy of this machine remains undisputed it fixes the fact that the discovery belongs to this country, and to an American.] He mentioned that his machine could be used either to generate a current of electricity on the application of motive power to its armature, or to produce motive power on connecting it with a source of electricity. Yet it did not occur to him to definitely experiment with two of his machines for the purpose of accomplis.h.i.+ng that which in less than twenty years has revolutionized our ideas and practice in transmitted force. He did not suggest that two of his machines could be run together, one as a generator and the other as a motor. He did not think of its advantages with the facilities for it, of his own creation, in his hands.
M. Fontaine states that at the Vienna Exposition of 1873 there was a Gramme machine intended to be operated by a primary battery, to show that the Gramme was capable of being worked by a current, and, as there was also a second machine of the same kind there, of also generating one. These two machines were to demonstrate this range of capacity as _separately worked_, one by power, the other with a battery. There was, then, no intention of coupling them together as late as 1873, with the means at hand and the suggestion almost unavoidable. The dynamo and motor had not occurred to any one. But M. Fontaine states that he failed to get the primary (battery) current in time for the opening, and was troubled by the dilemma. Then the idea occurred to him, as he could do no better, to work one of the machines with a current ”deprived,” partly stolen, from the other, as a temporary measure. A friend lent him the necessary piece of wire, and he connected the two machines. The machine used as a motor was connected with a pumping apparatus, and when the machine intended as a generator started, and this make-s.h.i.+ft, temporarily-stolen current was carried to the acting motor, the action of the last was so much more vigorous than was intended that the water was thrown over the sides of the tank. Fontaine was forced to remedy this excessive action by procuring an additional wire of such length that its resistance permitted the motor to work more mildly and throw less water. This accidentally established the fact of distance, convenience, a revolution in the power of the industrial world. Fontaine states that Gramme had previously told him that he had done the same thing with his machines. The idea was never patented. Neither Pacinotti, who invented the machine originally, nor Gramme, one of the great names of modern electricity, nor this skilled practical electrician, Fontaine, who had charge of the exhibit of the Gramme system at Vienna, considered the fact of the transmission of concentrated power over a thin wire to a great distance as one of value to its inventor or to the industries of mankind. With the motor and the dynamo already made, it was an accident that brought them together after all.
It may be amusing, if not useful, to spend a moment in reviewing of the efforts of men to utilize the power of the electrical current in mechanics before the day of the dynamo and a motor, and while yet the electric light was an infant in the nursery of the laboratory. They knew then, about 1835 to 1870, of the laws of induction as applied to the electro-magnet, or in small machines the generating power, so called, of the magneto-electric arrangement embodied, as a familiar example, in Kidder's medical battery. There is a long list of those inventors, American and European. The first patent issued for an American electro-motor was in 1837, to a man named Thomas Davenport, of Brandon, Vt. He was a man far ahead of his times. He built the first electric railroad ever seen, at Springfield, Ma.s.s., in 1835, and considering the means, whose inadequacy is now better understood by any reader of these lines than it then was by the deepest student of electricity, this first railroad was a success. Davenport came as near to solving the problem of an electric motor as was possible without the invention of Pacinotti.
Following this there were many patents issued for electro-magnetic motors to persons residing in all parts of the country, north and south.
One was made by C. G. Page, of the Smithsonian Inst.i.tute, in which the motive power consisted in a round rod, acting as a plunger, being pulled into the s.p.a.ce where the core would be in an ordinary electro-magnet, and thereby working a crank. [Footnote: The _National Intelligencer_, a prominent Was.h.i.+ngton newspaper, said with reference to Page's motor ”He has shown that before long electro-magnetic action will have dethroned steam and will be the adopted motor,” etc. This was an enthusiasm not based upon any fact then known about a machine not even in the line of the present facts of electro-dynamics.] A large motor of this kind is alleged, in 1850, to have developed ten horse power. It was actually applied to outdoor experiment as a car-motor on an actual railroad track, and was efficient for several miles. But it carried with it its battery-cells, and they were disarranged and stirred by the jolting, and being made of crockeryware were broken. The chemicals cost much more than fuel for steam, and there could be no economical motive for further experiment. It was a huge toy, as the entire sum of electrical science was until it was made useful first in the one instance of the telegraph, and long after that date the use of the electro-magnet, with a cam to cut off and turn on again the current at proper intervals, which was the one principle of all attempts, was a repeated and invariable failure. That which was wanted and lacking was not known, and was finally discovered and successively developed as has been described.