Part 13 (1/2)

The company, however, was financially unsuccessful. In October, 1832, the ”Infant” ran to Brighton from London, carrying a party of 11, at the rate of 9 miles per hour, ascending Redhill at a speed of 5 miles.

They steamed 38 miles the first day, stopping at night at Hazledean, and reached Brighton next day, running 11 miles per hour. Returning with 15 pa.s.sengers, the coach ran 1 mile in less than 4 minutes, and made 10 miles in 55 minutes. A run from Stratford to Brighton was made in less than 10 hours, at an average speed of 12 miles an hour running time, the actual running time being less than 6 hours. The next year another carriage, the ”Enterprise,” was put on the road to Paddington by Hanc.o.c.k for another company, and ran regularly over two weeks; but this company was also unsuccessful. In the summer of 1833 he brought out still another steam-coach, the ”Autopsy” (Fig. 49), which he ran to Brighton, and then, returning to London, man[oe]uvred the carriage in the crowded streets without difficulty or accident. He went about the streets of London at all times, and without hesitation. The coach next ran between Finsbury Square and Pentonville regularly for four weeks, without accident or delay. In the sketch, a part of the side is broken away to show the machinery. The boiler, _A B_, supplies steam through the steam-pipe, _H K_, to the steam-engine, _C D_, which is coupled to the crank-shaft, _F_. _E_ is the feed-pump. The rear axle is turned by the endless chain seen connecting it with the engine-shaft, and the rear wheels, _S_, are thus driven. A blower, _T_, gives a forced draught. The driver sits at _M_, steering by the wheel, _N_, which is coupled to the larger wheel, _P_, and thus turns the forward axle into any desired position. In 1834, Hanc.o.c.k built a steam ”drag” on an Austrian order, which, carrying 10 persons and towing a coach containing 6 pa.s.sengers, was driven through the city beyond Islington, making 14 miles an hour on a level, and 8 miles or more on rising ground. In the same year he built the ”Era,” and, in August, put the ”Autopsy” on with it, to make a steam-line to Paddington. These coaches ran until the end of November, carrying 4,000 pa.s.sengers, at a usual rate of speed of 12 miles per hour. He then sent the ”Era” to Dublin, where, on one occasion, it ran 18 miles per hour.

[Ill.u.s.tration: FIG. 49.--Hanc.o.c.k's ”Autopsy,” 1833.]

In 1835 a large carriage, the ”Erin,” was completed, which was intended to carry 20 pa.s.sengers. It towed three omnibuses and a stage-coach, with 50 pa.s.sengers, on a level road, at the speed of 10 miles an hour. It drew an omnibus with 18 pa.s.sengers through Whitehall, Charing Cross, and Regent Street, and out to Brentford, running 14 miles an hour. It ran also to Reading, making 38 miles, with the same load, in 3 hours and 8 minutes running time. The stops _en route_ occupied a half-hour. The same carriage made 75 miles to Marlborough in 7-1/2 hours running time, stopping 4-1/2 hours on the road, in consequence of having left the tender and supplies behind.

In May, 1836, Hanc.o.c.k put all his carriages on the Paddington road, and ran regularly for over five months, running 4,200 miles in 525 trips to Islington, 143 to Paddington, and 44 to Stratford, pa.s.sing through the city over 200 times. The carriages averaged 5 hours and 17 or 18 minutes daily running time. A light steam-phaeton, built in 1838, for his own use, made 20 miles an hour, and was driven about the city, and among horses and carriages, without causing annoyance or danger. Its usual speed was about 10 miles an hour. Altogether, Hanc.o.c.k built nine steam-carriages, capable of carrying 116 pa.s.sengers in addition to the regular attendants.[47]

[47] For a detailed account of the progress of steam on the highway, _see_ ”Steam on Common Roads,” etc., by Young, Holley, & Fisher, London, 1861.

In December, 1833, about 20 steam-carriages and traction road-engines were running, or were in course of construction, in and near London.

In our own country, the roughness of roads discouraged inventors; and in Great Britain even, the successful introduction of road-locomotives, which seemed at one time almost an accomplished fact, finally met with so many obstacles, that even Hanc.o.c.k, the most ingenious, persistent, and successful constructor, gave up in despair.

Hostile legislation procured by opposing interests, and the rapid progress of steam-locomotion on railroads, caused this result.

In consequence of this interruption of experiment, almost nothing was done during the succeeding quarter of a century, and it is only within a few years that anything like a business success has been founded upon the construction of road-locomotives, although the scheme seems to have been at no time entirely given up.

The opposition of coach-proprietors, and of all cla.s.ses having an interest in the old lines of coaches, was most determined, and the feeling evinced by them was intensely bitter; but the advocates of the new system of transportation were equally determined and persevering, and, having right on their side, and the pecuniary advantage of the public as their object, they would probably have succeeded ultimately, except for the introduction of the still better method of transportation by rail.

In the summer of 1831, when the war between the two parties was at its height, a committee of the British House of Commons made a very complete investigation of the subject. This committee reported that they had become convinced that ”the subst.i.tution of inanimate for animal power, in draught on common roads, is one of the most important improvements in the means of internal communication ever introduced.”

They considered its practicability to have been ”fully established,”

and predicted that its introduction would ”take place more or less rapidly, in proportion as the attention of scientific men shall be drawn, by public encouragement, to further improvement.” The success of the system had, as they stated, been r.e.t.a.r.ded by prejudice, adverse interests, and prohibitory tolls; and the committee remark: ”When we consider that these trials have been made under the most unfavorable circ.u.mstances, at great expense, in total uncertainty, without any of those guides which experience has given to other branches of engineering; that those engaged in making them are persons looking solely to their own interests, and not theorists attempting the perfection of ingenious models; when we find them convinced, after long experience, that they are introducing such a mode of conveyance as shall tempt the public, by its superior advantages, from the use of the admirable lines of coaches which have been generally established, it surely cannot be contended that the introduction of steam-carriages on common roads is, as yet, an uncertain experiment, unworthy of legislative attention.”

Farey, one of the most distinguished mechanical engineers of the time, testified that he considered the practicability of such a system as fully established, and that the result would be its general adoption. Gurney had run his carriage between 20 and 30 miles an hour; Hanc.o.c.k could sustain a speed of 10 miles; Ogle had run his coach 32 to 35 miles an hour, and ascended a hill rising 1 in 6 at the speed of 24-1/2 miles. Summers had traveled up a hill having a gradient of 1 in 12, with 19 pa.s.sengers, at the rate of speed of 15 miles per hour; he had run 4-1/2 hours at 30 miles an hour. Farey thought that steam-coaches would be found to cost one-third as much as the stage-coaches in use. The steam-carriages were reported to be safer than those drawn by horses, and far more manageable; and the construction of boilers adopted--the ”sectional” boiler, as it is now called--completely insured against injury by explosion, and the dangers and inconveniences arising from the frightening of horses had proved to be largely imaginary. The wear and tear of roads were found to be less than with horses, while with broad wheel-tires the carriages acted beneficially as road-rollers. The committee finally concluded:

”1. That carriages can be propelled by steam on common roads at an average rate of 10 miles per hour.

”2. That at this rate they have conveyed upward of 14 pa.s.sengers.

”3. That their weight, including engine, fuel, water, and attendants, may be under three tons.

”4. That they can ascend and descend hills of considerable inclination with facility and safety.

”5. That they are perfectly safe for pa.s.sengers.

”6. That they are not (or need not be, if properly constructed) nuisances to the public.

”7. That they will become a speedier and cheaper mode of conveyance than carriages drawn by horses.

”8. That, as they admit of greater breadth of tire than other carriages, and as the roads are not acted on so injuriously as by the feet of horses in common draught, such carriages will cause less wear of roads than coaches drawn by horses.

”9. That rates of toll have been imposed on steam-carriages, which would prohibit their being used on several lines of road, were such charges permitted to remain unaltered.”

THE RAILROAD, which now, by the adaptation of steam to the propulsion of its carriages, became the successful rival of the system of transportation of which an account has just been given, was not a new device. It, like all other important changes of method and great inventions, had been growing into form for ages. The ancients were accustomed to lay down blocks of stone as a way upon which their heavily-loaded wagons could be drawn with less resistance than on the common road. This practice was gradually so modified as to result in the adoption of the now universally-practised methods of paving and road-making. The old tracks, bearing the marks of heavy traffic, are still seen in the streets of the unearthed city of Pompeii.

In the early days of mining in Great Britain, the coal or the ore was carried from the mine to the vessel in which it was to be embarked in sacks on the backs of horses. Later, the miners laid out wagon-roads, and used carts and wagons drawn by horses, and the roads were paved with stone along the lines traversed by the wheels of the vehicles.

Still later (about 1630), heavy planks or squared timber took the place of the stone, and were introduced into the north of England by a gentleman of the name of Beaumont, who had transferred his property there from the south. A half century later, the system had become generally introduced. By the end of the eighteenth century the construction of these ”tram-ways” had become well-understood, and the economy which justified the expenditure of considerable amounts of money in making cuts and in filling, to bring the road to a uniform grade, had become well-recognized. Arthur Young, writing at this time, says the coal wagon-roads were ”great works, carried over all sorts of inequalities of ground, so far as the distance of nine or ten miles,” and that, on these tram-ways of timber, ”one horse is able to draw, and that with ease, fifty or sixty bushels of coals.” The wagon-wheels were of cast-iron, and made with grooved rims, which fitted the rounded tops of the wooden rails. But these wooden rails were found subject to rapid decay, and at Whitehaven, in 1738, they were protected from wear by cast-iron plates laid upon them, and this improvement rapidly became known and adopted. A tram-road, laid down at Sheffield for the Duke of Norfolk, in 1776, was made by laying angle-bars of cast-iron on longitudinal sleepers of timber; another, built by William Jessup in Leicesters.h.i.+re, in 1789, had an edge-rail, and the wheels were made with f.l.a.n.g.es, like those used to-day. The coned ”tread” of the wheel, which prevents wear of f.l.a.n.g.es and reduces resistance, was the invention of James Wright, of Columbia, Pa., 40 years later. The modern railroad was simply the result of this gradual improvement of the permanent way, and the adaptation of the steam-engine to the propulsion of its wagons.

At the beginning of the nineteenth century, therefore, the steam-engine had been given a form which permitted its use, and the railroad had been so far perfected that there were no difficulties to be antic.i.p.ated in the construction of the permanent way, and inventors were gradually preparing, as has been seen, to combine these two princ.i.p.al elements into one system. Railroads had been introduced in all parts of Great Britain, some of them of considerable length, and involving the interests of so many private individuals that they were necessarily constructed under the authorization of legal enactments.